1 (a) (i) Write the algebraic inequality represented on this number line.

(a)(i)
(ii) Write down all the integers that satisfy the inequality in part (a)(i).
$\qquad$
(b) Solve.

$$
-5 x>20
$$

> (b)

2 (a) Solve this inequality.

$$
7 x>3 x+6
$$

(a)
[2]
(b) Represent $x \leqslant 2$ on this number line.

[2]

3 (a) (i) Solve this inequality.

$$
2 m+6>-4
$$

(a)(i)
[2]
(ii) Represent your answer to part (a)(i) on this number line.

(b) This diagram represents the solution of another inequality.


What is the smallest integer that $x$ can be?
(b)

4 (a Solve this inequality.

$$
5 x-2<18
$$

(a)
(b) This diagram represents the solution of $p<2 x+7 \leqslant q$.


Find the integers $p$ and $q$.
(b) $p=$
$q=$

5 (a Solve this inequality.

$$
3 x-2 \leq 10
$$

(a)
(b) Represent your solution to part (a) on this number line.


6 In this question, represent the inequalities by shading the area not required.
On the grid below, the line $y=x+3$ is shown.

(a) Indicate clearly the region $y<x+3$ by shading the area not required.
(b) Indicate clearly the region $x+y<5$.

Shade the area not required.
(c) You are given that $x$ and $y$ are integers that satisfy these three inequalities.

$$
\begin{aligned}
y & <x+3 \\
x+y & <5 \\
y & >2
\end{aligned}
$$

Use your diagram to find $x$ and $y$.
(c) $x=$
$y=$

7 (a) Solve this inequality.

$$
3 y-11>25
$$

(a) .......................................................... [2]
(b) Find all the integer values of $w$ that satisfy this inequality.

$$
9<3 w<20
$$

(b)

8 (a) Solve this inequality.

$$
5 m+8<43
$$

(a)
(b) Represent your solution to part (a) on this number line.

$$
\begin{array}{llll|l|l|l|l|l|l|l|ll}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & m \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & m
\end{array}
$$

9 (a Solve this inequality.

$$
\frac{x}{4}-5<
$$

(a)
(b) Represent your solution to part (a) on this number line.


10 Beads can be bought in packets, each containing $x$ beads.
Lizzie has 7 packets of beads and 2 extra beads.
Grace has 5 packets of beads and 25 extra beads.
Grace has more beads than Lizzie.
(a) Write an inequality in $x$ to show this information.
(a)
(b) Solve your inequality and hence write down the largest number of beads that could be in each packet.

## (b)

11 Solve this inequality.

$$
5 n+2>2 n-13
$$

12 Solve this inequality.

$$
7 x+5 \leqslant 47
$$

