1 (a) (i) Write the algebraic inequality represented on this number line.

(a)(i)[3]

(ii) Write down all the integers that satisfy the inequality in part (a)(i).

(ii)[2]

(b) Solve.

-5x > 20

(b)[2]

2 (a) Solve this inequality.

$$7x > 3x + 6$$

(a)[2]

(b) Represent $x \le 2$ on this number line.

[2]

3 (a) (i) Solve this inequality.

$$2m + 6 > -4$$

(a)(i)_____[2]

(ii) Represent your answer to part (a)(i) on this number line.

(b) This diagram represents the solution of another inequality.

What is the smallest integer that *x* can be?

(b)_____[1]

4 (a Solve this inequality.

$$5x - 2 < 18$$

(a) _____[2]

(b) This diagram represents the solution of $p < 2x + 7 \le q$.

Find the integers p and q.

(b)
$$p =$$
_____[3]

5 (a Solve this inequality.

$$3x-2 \leq 10$$

(a) _____[2]

(b) Represent your solution to part (a) on this number line.

[1]

[1]

[2]

6 In this question, represent the inequalities by shading the area **not** required.

On the grid below, the line y = x + 3 is shown.

- (a) Indicate clearly the region y < x + 3 by shading the area **not** required.
- **(b)** Indicate clearly the region x + y < 5.

Shade the area **not** required.

(c) You are given that x and y are integers that satisfy these **three** inequalities.

$$y < x + 3$$
$$x + y < 5$$
$$y > 2$$

Use your diagram to find x and y.

7	(a)	Solve this inequality.	
		3 <i>y</i> – 11 > 25	
		(4	a)[2
	(b)	Find all the integer values of w that satisfy this ine	equality.
		9 < 3 <i>w</i> < 20	
			-)
		(I	o)[2 _.

8 (a) Solve this inequality.

$$5m + 8 < 43$$

(a) _____[2]

(b) Represent your solution to part (a) on this number line.

[1]

9 (a Solve this inequality.

$$\frac{x}{4} - 5 <$$

(a) _____[2]

(b) Represent your solution to part (a) on this number line.

	J	•	•	J
Lizzie has	7 packets	of beads	and 2 extra	beads.

10 Beads can be bought in packets, each containing *x* beads.

Grace has 5 packets of beads and 25 extra beads.

Grace has more beads than Lizzie.

(a) Write an inequality in *x* to show this information.

(a) ______[1]

(b) Solve your inequality and hence write down the largest number of beads that could be in each packet.

(b) _____[4]

11 Solve this inequality.

$$5n + 2 > 2n - 13$$

12 Solve this inequality.

 $7x + 5 \le 47$

_____[2]